WSEAS TRANSACTIONS on MATHEMATICS

Said Agouijil, Abdeslem Hafid Bentbib

A Note on Symplectic J-SVD Like Decoposition

SAID AGOUIJIL

ABDESLEM HAFI BENTBIB

Faculty of Science and Technology ErrachidiRaculty of Science and Technology Marrakech

Department of Computer Science

BP 509 Boutalamine 52 000 Errachidia

MAROCCO
agoujil@gmail.com

Department of Mathematics
BP 549, 42 000 Marrakech
MAROCCO
ahbentbib@gmail.com

Abstract: This paper presents a symplectic J-SVD like decomposition of 2n-by-2m rectangular real matrix based
on symplectic reflectors The idea for this approach was to use symplectic reflector to firs reduce the matrix to
J-bidiagonal form and then transform it to a diagonal form by using sequence of symplectic similarity transfor-
mations. This was done in parallel with the Golub-Kahan-Reinsch method. This method allowed us to compute

eigenvalues for the skew-Hamiltonian matrix A7 A.
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1 Introduction

Singular Value Decomposition has been used in many
field of scientifi computing such as data com-
pression, signal processing, automatic control work-
ing on applied linear algebra, signal and image
processing[14, 15]. This paper makes the main con-
tribution to this area of research. Which is compu-
tation of a J-SV D like decomposition by applying
symplectic reflector to columns and rows to obtain
a J-bidiagonal matrix. By the use of sequences of
symplectic reflectors we transform a J-bidiagonal
matrix to a diagonal matrix, in parallel with Golub-
Kahan-Reinsch method [9, 10]. This approach al-
lowed us to compute eigenvalues for structured ma-
trices such as the Hamiltonian matrix JA” A and
the skew-Hamiltonian matrix A7 A. Most eigenvalue
problems that arise in practice are known to be struc-
tured. Therefore, preserving the structure can help
preserve physically relevant symmetries in the eigen-
values of the matrix and may improve the accuracy
and efficien y of eigenvalue computation. Hamilto-
nian and skew-Hamiltonian eigenvalue problems arise
from a number of applications, particularly in systems
and control theory [8, 13, 16].

The paper is organized as follows: section 2 intro-
duce some notation and some basic result; a symplec-
tic J-SVD like decomposition method is proposed in
section 3; and in section 4, numerical results are given
to demonstrate the effectiveness of the proposed algo-
rithms.
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2 Terminology, notation and some
basic facts

An ubiquitous matrix in this work is the skew-
_Ojf; (1)7; ), where I,
and O,, are the n x n identity and zero matrix respec-
tively. Note that J;,' = JJ = —Jo,. In the fol-
lowing, we omit the subscript n and 2n whenever the
dimension of corresponding matrix is clear from its
context. The J-transpose of any 2n-by-2p matrix M
is define by M7 = Jg;MTJQn € R?P*27 Hamil-
tonian matrix M € R?"*2" has the explicit block

structure M = ( 4R >, where A, G, R are

symmetric matrix Jo, = (

G AT
real n x n matrices and G = GT, R = RT. By
straightforward algebraic manipulation, we can show
that a Hamiltonian matrix M is equivalently define

by the property M7 = —M. Likewise, a matrix M
is skew-Hamiltonian if and only if M7 = —M, it

AR)

has the explicit block structure W = (

G AT
where A, G, R are real n x n matrices and G = —G7,
R = —R”T. Any matrix S € R?>"*? that satis-

fie this property ST.J2,S = Jap (878 = I5p) is
called symplectic matrix. This property is also called
J-orthogonality. The symplectic similarity transfor-
mations preserve Hamiltonian and skew-Hamiltonian
structures.
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Remark 1. An augmentedatrix

I 0 0 0
g_| 0 Pu 0 P
0 0 I 0
0 Py 0 P

Py
Py

Prs

is symplectic if and only i = (
Py

)is

We obtained some useful results with this matrix.
Setting E; = [e; enyi] € RZ2 fori=1,--- ,n, we
obtain

also symplectic too.

E} = EI and E{ E; = 6;;1; where
ifi=j

1
i _{ 0 ifi#j
Proposition 2. LetU = [u; ug] be a2n-by-2 real
) 2n 1) 2n (2)
matrix, whereu; = > u, 'e; anduy = ) u;e;.
=1 =1

Then,U is written uanuer as linear combination of
(Ei)1<i<y ON the ringR?*2,

n
U= ZEiMi whereM; =
=1
Proposition 3. Let M be a 2n-by-2n real ma-

trix. Then, M is expressed uniquely as/
>ie1 >y EiM;; ET whereM;; € R**** is given

T )

Proposition 4. With the notations of the previous
proposition, a matrix\/ € R?"*2" is Hamiltonian (or
skew-Hamiltonian) if\f;; = —M;; (or My = My;).

\ Min+j
Mp4i,5 ‘ Mp+4in+j

mi,j

Proof. The result is obvious, as M7/ =
n n
QZIEiM;;EjT and by definitio M7 = —M. O
1=17=

= Y. Y. EiM;;Ef
i=1j=1

R2"*27 js called in uppet/-bidiagonal form ifM;;
09 for j ¢ {i,i+ 1} and, in addition,M;; and M;; 11

are diagonal.

Definition 5. A matrix M €

2.1 Symplectic reflectors

The symplectic reflecto [2, 3] in R?"*2 is define in
parallel with elementary reflectors
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Proposition 6. [3] Let U and V' be two2n-by-2 real
matrices that satisfy /U = V’/V = I,. Ifthe2-by-2
matrixC = I,+V/Uis nonsingular, the transforma-
tion S = (U +V)C~YU + V)’ — I, is symplectic
and takedJ to V. This is called a symplectic reflector.
Additionally, if U7/ = UT andV’ = V7T, thenS is
orthogonal and symplectic.

Remark 7. The proposition above remains true only
if U/U = V'V . Inthis caseC = U'U + V/U.

Lemma 8. LetU = [u; up] € R*>*2 pe a non-
isotropic matrix ((7U # 05) andV = Uq(U) ! its
normalized matrix. Then, there is a symplectic reflec-
tor S takesV to E; and thereford/ to E1¢(U), which

in turn takes the following form:

*

0

0
0

SU = /S n+1

o

where

ifa>0
) ifa<0

Remark 9. Using symplectic reflectors with a ma-

trix A € R?*2" we obtain the factorizatiomt

SR, where S ¢ R2?"*2n js symplectic andR
LENAE > € R¥2n R s J-triangular and,
Ro1  Rao

in addition, R15 is a strictlyn-by-n upper triangular

matrix. R is as follows:

Vvals
qU) = ~— (1 0

O‘<0 —1
a = ull Jus.

We discuss below some useful properties of sym-
plectic reflectors

Proposition 10. Let .S be a2n-by-2n real symplectic
matrix. There is then a sequence of symplectic reflec-
tors S1, S, -+, Sy, such thatsS = 5155 ---.5,,.

Volume 17, 2018



WSEAS TRANSACTIONS on MATHEMATICS
Proof. Step 1.

Set U1 = [q1,qn+1] € R?*™2 As S is sym-
plectic, then Ui] Uy = I5. Then, the symplectic
reflecto P, = (U1 + El)(IQ + Ei]Ul)_l(Ul +
Ey)’ — Iy, verifie PiU; = FEj;. The (n + 1)%-
component of both (Pyq;) and (Pign+k) is equal
to zero for k = 2,3,...n. On the one hand,
(PLg)TJ (Pigr) = q¢fJg = 0, and on the
other hand, (Piq1)T"J (Piqr) = efJ(Piqr) =
el 1 (Pigy) is simply the (n + 1)"-component of
(P1qy). Likewise, the firs component of both (P;qy)
and (P1¢,,+) disppears. Finally, we obtain

n n

1 0 0

0 = * 0 =x* *
n

PSS = 0 x - = 0 % --- =

0 ) 1

0 x * 0 =x *
n .

0 = * 0 = *

Thereafter, we continue to update the value of g¢;:
q; «<— Pi1q; by varying ¢ from 1 to 2n. Note that
now we have qg1 = e and ¢n+1 = €n41.

Step 2:

Set Uy = [q1, qny1) € R?™*2. As S is symplec-
tic, then U1J U, = I and the symplectic reflecto al-
lows us to set Us = [qo, qni2] € R?"X2. As P, S is
still symplectic, Uy verifie U2J U = I, and the sym-
plectic reflecto Py = (U + E2)(Ix+ Ey Us) ™1 (Ua +
EQ)J — Iy, has the following form:

1 0 010 O 0

0 x % x % ok %

* * % ok

0 * x|0 *x % %
P=15 S 0[1 0 -0
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and verifie P,U; = Es. As in step 1, we obtain

1 00 0 0 00 0
010 0 0 0O 0
0 0 = * 0 0 = *
0 0 = * 0 0 = *
PbS = 00 0 0] 1 0 0 0
0 00 0 010 0
0 0 = * 0 0 = *
0 0 *x .. =x 0O 0 *x ... x

We thereby obtain P, --- P,P.S = Is,, and then
S = 51S5y---85, where S, = P,;’, which achieves
the desired result. ]

Remark 11. In lemmaz2.1, by usingU = [u — Ju],
whereu € R?" with ||u|| # 0, we obtainS that or-
thogonal and symplectic.

Lemma 12. Letu € R?® be a nonzer@s-component

real vector. The orthogonal symplectic reflector=

(U +~vaEy)(aly++/aFE{U) Y (U +aE)’ — I,

whee U = [u — Ju] verifiesSu = /ae; witha =
2

ulu = [lull3.

Proof. As U'U = aly with o = u"u = ||ul|3 > 0,

then a simple calculation gives the result. O

2.2 Symplectic Givens rotations

In the following, we defin the rotation on R?"*?2 seen
as a free K-module structure on K = R?*2, For more
information on symplectic rotations see [7].

Definition 13. A rotation in the(E;, E;) plane is de-
fined by R(i,§,C,S) = Iy, + E;(C — L) El +

E;SE] —E;S’E]l' + E; (C7 — I) E] whereC and
S are 2—by—2 matrix (recall thatE; = [e; e,4i] €

R2n><2).

Let us now examine the condition in which the
rotation R(i, j, C, S) is symplecic.

Proposition 14. [7] The rotation R(, j,C, S) in the
(E;, E;) plane is symplectic if and only iet(S) +
det(C) = 1andCS = SC. ltis also orthogonal if

S and (' are in the following formS = ( _ab z >
c d
C= < —d ¢ )
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Let U € R*™2 such that U = > 1 | E;M;.

If M;My = MsM,, then, by taking S = —= My,
Ja
1
C = ﬁMIJ and P = R(1,2,C,S)(where o =

det(My) + det(Msy) > 0), the 2-by-2 second com-
ponent is zero and W = PU is in following form:

Va 0
0 0
* * — 2
* *
=10 va
0 0
—n—+2
* %
* %

Remark 15. The symplectic rotation defined above

is simply a symplectic reflectolS = (U +
E) (I + E/U) ™" (U + E;)” — I, and takesJ to
|4

3 The J-SVD decomposition

Golub, Kahan and Reinsch [9, 10] presented an ef-
fective, widely used method to fin the SVD of an
arbitrary rectangular real matrix A. The method is
based on computing a bidiagonal matrix for two uni-
tary matrices constructed from the product of a se-
quence of Householder transformations. The second
phase consists in transforming the obtained bidiago-
nal matrix to a diagonal one by a variant of the QR
iteration. Our purpose was to describe J-SVD de-
composition of a 2n-by-2m rectangular matrix A on
the basis of J-bidiagonalization with symplectic re-
flectors The proposed method is define in parallel
with the Golub-Kahan-Reinsch approach. It allows
us to compute the eigenvalues of skew-Hamiltonian
matrix A’/ A without computing the product of the
full matrix. We obtained the following result for
rank(ATJA) = rank(A),

¥, 0] 0 0
0 0|0 0
PAQ = 0 0[%, 0
0 0/ 0 0

where P, () are symplectic matrices and ¥, =
o1, 0p, 2p = rank(A).
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3.1 TheJ-Bidiagonalization method

We present here two approaches for computing the J-
bidiagonal form of 2n-by-2m rectangular real matrix.
The firs uses a sequence of symplectic reflector ap-
plied alternately from the left and the right to the zero
parts of the matrix. The second is based on an sym-
plectic Lanczos .J-bidiagonalization.

3.1.1 First approach

Let A be a 2n-by-2m rectangular real matrix. For the
algorithm, we used symplectic reflector to compute
a J-bidiagonal form B, such that A = PB(Q), where
P € R?"X2n () € R2m*2m are symplectic matrices.
We illustrate the method for n = 4, m = 3 as follows:
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S OO OO OO ¥

OO OO OO ¥

R R I S R

[an}

O S R T S R X X X ¥ ¥ ¥ ¥ x

* ¥ ¥ O ¥ ¥ ¥ ¥

O S S S S S R

EE S R S R

* ¥ ¥ O % *x ¥ O

O S I S R

O OO ¥ OO OO O OO ¥ OO OO

* X X X K K X KX X X X ¥ ¥ ¥ ¥ x

* X K X X X ¥ O

I O T T S I

* X X X K ¥ X X

* % ¥ O % * *x O

the fir t step
is to zero
the(2:8,1), (1:4,5)
and (6:8,5) positions
—

P applied from the left

the second step is
to zero the (1,3)
(1,5:6), (5,2:3)

and (5,6) positions

—

(@1applied from the right

the third step
is to zero the (3:4,2),
(6:8,2)
positions
—

P applied from the left

O OO OO OO *

OO O OO OO ¥

OO OO OO ¥

[an}

O S R S R

* K X O K K X K

OO OO O ¥ ¥

[an)
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¥ ¥ ¥ O % % ¥ © K K K K X X X X

* % ¥ O % * *x O

Coox ocoooo P X o000

T
O O ¥ OO OO

[an}

¥ o¥ X X X X X © K K K K K X XX

O ¥ ¥ O O OO

[an}

¥ ¥ ¥ O % % x © K K K K KX X X X

* ¥ ¥ O O % ¥ O

The last step is to zero the (4,3), (5 : 8,3), (2 : 3,6), (8,6) positions, applying the symplectic reflecto P; from
the left to obtain the desired J-bidiagonal form:

1T
OO OO OO O *
I
1T
I

O OO ¥ OO OO
OO *x ¥ OO OO
O % ¥ © O O OO

OO O OO ¥*x ¥ O

OO O OO O ¥ ¥
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Algorithm 3.1: J-Bidiagonalization Algorithm

Input : Matrix A € R?x2m

Output: Symplectic matrix P € R?"*?" and

symplectic matrix Q € R?™*?™ and

the J-Bidiagonal matrix B

so that PAQ = B.

P and @ are products of symplectic reflector
1. Fork=1,2,---,m

o Set Uy, = [u v] = AE), where Ej, = [ex, ep+k]

eFori=1,--- k-1
u(@)«—0 , u(n+i)«—0
{ v (i) 0 . v(n+i) 0
e EndFor
e Compute the symplectic reflecto Py
associated to Uy and
Update A «— P A
e Set Vi, = [u v] = AET
eFori=1,--- k-1
u(@)«—0 , u(n+i)«—20
{ v(i)«—0 , v(n+i)—0
e EndFor
e Compute the symplectic reflecto Q.
associated to V. and
Update A «— AQT
2. EndFor k
3.B+— A.
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3.1.2 Second approach

The Lanczos bidiagonalization technique can be ap-
proached from several equivalent perspectives. We
started by setting up the notation.  Consider ,
A = PJBQ where P = [plapQ"" 7p2n], Q =
(91,92, -, q2n] are symplectic matrices, and B is J-
bidiagonal matrix, as follows:

B =P/AQ =

a; B1 0 0o |0 0 0 0

0 ay 0 0 0 0

0 0 " Bna|0 0 O 0

0 0 0 @, |0 0 0 0

0 0 0 0O [0 0 0 ©

0 0 0 0 |m 6 0 0

0 0 0 0 |0 0

0 0 0 0 |0 0 Sm—1
0 0 0 0 [0 0 0 vy,
0 0 0 0 [0 0 0 ©

Using the above result, we constructed the fol-
lowing algorithm to obtain the J-bidiagonal form and
symplectic matrices P and Q).
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Algorithm  3.2:
J—Bidiagonalization
Input: Matrix A € R2"*2m (n, > m) and
a symplectic matrix Vi = [q1 Qunp1] € R2m*2
Output: Symplectic matrix P € R?"*2" and
symplectic matrix Q) € R?™*?™ such that
P’ AQ is J—bidiagonalization.
1. Set Cy = 092 and Uy = 09y, %2
2.Fori=1,2,---.m
-W=AV, —U;_1C;—
(AV; = U;i—1Ci—1 + Ui Ny)
- Compute a diagonal 2-by-2 real matrix N;
such that NiJNi =w'w
(see, J—Normalization above)
- Set a; = Nz(l, 1) and Yi = NZ(Q, 2) and
U; = [pi Pnsi] = WN;!
-W = A'U; — V;N/
(A7U; = ViN{ + Via CY)
- Using J—Normalization above, compute
a diagonal 2-by-2 real matrix C;
such that C’;] C, =W'wW
-Set 3; = C;(1,1) and 6; = C;(2,2) and
Vit1 = [Qit1 Qmit1] = WC7

Symplectic Lanczos

3. End

4.B=P/AQ =
ar B O 0 0 0 O 0
0 az - 0 |0 0O O O
0 0 " Bu—a|0 0 0 O
0 0 0 @, |0 0 0 0
0 0 0 0O |0 0 0 0
0 0 0 0 |vm 6 0 0
0 0 0 0 |0 7 0
0 0 0 0 |0 0 Sm—1
0 0 0 0 |0 0 0
0 0 0 0O |0 0 0 0

is the desired form.
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3.2 TheJ-SVD decomposition via a symplec-

tic Golub-Kahan-Reinsch method

This method consists of two phases. In the firs
phase, finit sequences of symplectic reflector are
constructed as described above to obtain the desired
J-bidiagonal matrix (see algorithm 4.1). B = PAQ’
is J-bidiagonal where P and () are symplectic matri-
ces. They can also be obtained by symplectic Lanczos
J—bidiagonalization (see algorithm 4.2). The sec-
ond phase consists to iterative diagonalization of .J-
bidiagonal matrix B by a symplectic () R-like method
using the symplectic Givens rotations described in
paragraph 2.2.

B=pBO _, g — yOpBO,Q) .

¥ 0/ 0 0

" _ g gh-Dy® .. 5_|_0 0[]0 0
BW =U"BTNV — X 0 0|3, 0
0 00 0

where U, V(%) are product of symplectic Givens
rotations and ¥, =diag(oy, - ,0p), 2p = rank(A)

Numerical examples

We report here the results of numerical tests in which
we compared our method for computing the eigenval-
ues of skew-Hamiltonian matrix A” A with the Matlab
method. We calculated the error in J-SVD decompo-
sition for rectangular matrix A and the relative errors
of computed eigenvalues of A7 A.

Example:

Let A be a rectangular matrix of order 16 x 12
define as follows:

QT

olo|lolM
oMl o|lo
olo|lo|lo
olo|lo|lo

[en) Nen) Nen] Nean)
(v} Bewl Hen) Neaw]

where P is a 16 x 16 random orthogonal symplectic
matrix, and @ is a 12 x 12 random orthogonal sym-
plectic matrix.

oY = diag(9,8,5,4,2,1,), the error for J-SVD
decomposition was 3.8352e — 015. The relative er-
rors by our method and that of the Matlab method for

Volume 17, 2018



WSEAS TRANSACTIONS on MATHEMATICS

nonzero eigenvalues are shown in the table below:

eigenvalue J-SVD Matlab 7.8.0
+81 2.2808e — 015 | 5.2633¢ — 015
+64 5.1070e — 015 | 9.9920e — 015
+25 0 5.6843e — 016
+16 1.3323e — 015 | 5.2458e — 015

+4 0 2.9976e — 015
+1 ] 6.6613¢ — 016 | 4.7740e — 015 |

e ¥ = diag (10%,10,1,1071,1072,107%), the
error for J-SVD decomposition was 8.5520e — 008.
The relative errors by our method and that of the Mat-
lab method for nonzero eigenvalues are shown in the

table below:

eigenvalue J-SVD Matlab 7.8.0
+10* | 3.6380e — 016 | 8.4254e — 016
+102 7.1054e — 016 | 4.2633¢ — 016

+1 1.7764e — 015 | 5.8842¢ — 015
+1072 | 2.7756e — 015 | 5.1963e — 011
+10~* | 4.0251e — 014 | 1.3693e — 009
+10~% | 1.1465e — 011 | 2.4381e — 006

e In this case a matrix A is of order 24 x 20 and
Y

diag (10°,10%,10,1,107,1072,107%,107%,107°,107F),

the error for J-SVD decomposition was
4.6566e — 016. The relative errors by our method and
that of the Matlab method for nonzero eigenvalues

are shown in the table below:

eigenvalue J-SVD Matlab 7.8.0
+10° 0 1.8190e — 016
+10% 2.8422¢ — 016 | 1.4381e — 013
+10° 6.6613e — 016 | 1.6211e — 012

+1 2.2551e — 014 | 1.4152e — 009
+10~2 | 5.8005¢ — 014 | 1.5873e — 008
+10~* | 2.4882¢ — 013 | 9.0538¢ — 006
+107% | 2.5295¢ — 010 0.0012
+10~8 | 1.8854e — 009 0.3243
+10710 | 9.4335¢ — 010 22.3130
+10~™ | 4.6566e — 008 | 1.0000e + 05

4 Conclusion

We have presented a numerical method for computing
symplectic J-SVD like decomposition. This method
was inspired by the Golub-Kahan-Reinsch method.
Our approach here was based on the use of sym-
plectic reflectors The structured matrices such as
skew-symmetric matrix AJ AT, the Hamiltonian ma-
trix JAT A and the skew-Hamiltonian matrix A7 A
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can be derived from such a decomposition. The nu-
merical examples presented show the effectiveness of
proposed algorithm.
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