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Abstract:This paper presents a symplectic J-SVD like decomposition of 2n-by-2m rectangular real matrix based
on symplectic reflectors The idea for this approach was to use symplectic reflector to firs reduce the matrix to
J-bidiagonal form and then transform it to a diagonal form by using sequence of symplectic similarity transfor-
mations. This was done in parallel with the Golub-Kahan-Reinsch method. This method allowed us to compute
eigenvalues for the skew-Hamiltonian matrix AJA.
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1 Introduction

Singular Value Decomposition has been used in many
field of scientifi computing such as data com-
pression, signal processing, automatic control work-
ing on applied linear algebra, signal and image
processing[14, 15]. This paper makes the main con-
tribution to this area of research. Which is compu-
tation of a J-SV D like decomposition by applying
symplectic reflector to columns and rows to obtain
a J-bidiagonal matrix. By the use of sequences of
symplectic reflectors we transform a J-bidiagonal
matrix to a diagonal matrix, in parallel with Golub-
Kahan-Reinsch method [9, 10]. This approach al-
lowed us to compute eigenvalues for structured ma-
trices such as the Hamiltonian matrix JAT A and
the skew-Hamiltonian matrix AJA. Most eigenvalue
problems that arise in practice are known to be struc-
tured. Therefore, preserving the structure can help
preserve physically relevant symmetries in the eigen-
values of the matrix and may improve the accuracy
and efficien y of eigenvalue computation. Hamilto-
nian and skew-Hamiltonian eigenvalue problems arise
from a number of applications, particularly in systems
and control theory [8, 13, 16].

The paper is organized as follows: section 2 intro-
duce some notation and some basic result; a symplec-
tic J-SVD like decomposition method is proposed in
section 3; and in section 4, numerical results are given
to demonstrate the effectiveness of the proposed algo-
rithms.

2 Terminology, notation and some
basic facts

An ubiquitous matrix in this work is the skew-

symmetric matrix J2n =

(
On In

−In On

)
, where In

and On are the n× n identity and zero matrix respec-
tively. Note that J−1

2n = JT
2n = −J2n. In the fol-

lowing, we omit the subscript n and 2n whenever the
dimension of corresponding matrix is clear from its
context. The J-transpose of any 2n-by-2p matrix M
is define by MJ = JT

2pM
T J2n ∈ R

2p×2n. Hamil-
tonian matrix M ∈ R

2n×2n has the explicit block

structure M =

(
A R
G −AT

)
, where A, G, R are

real n × n matrices and G = GT , R = RT . By
straightforward algebraic manipulation, we can show
that a Hamiltonian matrix M is equivalently define
by the property MJ = −M . Likewise, a matrix M
is skew-Hamiltonian if and only if MJ = −M , it

has the explicit block structure W =

(
A R
G AT

)
,

whereA, G, R are real n×nmatrices andG = −GT ,
R = −RT . Any matrix S ∈ R

2n×2p that satis-
fie this property ST J2nS = J2p (SJS = I2p) is
called symplectic matrix. This property is also called
J-orthogonality. The symplectic similarity transfor-
mations preserve Hamiltonian and skew-Hamiltonian
structures.
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Remark 1. An augmentedmatrix

S =




I 0 0 0
0 P11 0 P12

0 0 I 0
0 P21 0 P22




is symplectic if and only ifP =

(
P11 P12

P21 P22

)
is

also symplectic too.

We obtained some useful results with this matrix.
Setting Ei = [ei en+i] ∈ R

2n×2 for i = 1, · · · , n, we
obtain

EJ
i = ET

i and EJ
i Ej = δijI2 where

δij =

{
1
0

if i = j
if i 6= j

Proposition 2. Let U = [u1 u2] be a2n-by-2 real

matrix, whereu1 =
2n∑
i=1

u
(1)
i ei and u2 =

2n∑
j=1

u
(2)
j ej .

Then,U is written uniquely as linear combination of
(Ei)1≤i≤n on the ringR

2×2.

U =
n∑

i=1

EiMi whereMi =

(
u

(1)
i u

(2)
i

u
(1)
n+i u

(2)
n+i

)

Proposition 3. Let M be a 2n-by-2n real ma-
trix. Then, M is expressed uniquely asM =∑n

i=1

∑n
j=1 EiMijE

T
j whereMij ∈ R

2s×2s is given
by, (

mi,j mi,n+j

mn+i,j mn+i,n+j

)

Proposition 4. With the notations of the previous
proposition, a matrixM ∈ R

2n×2n is Hamiltonian (or
skew-Hamiltonian) ifMJ

ij = −Mji (or MJ
ij = Mji).

Proof. The result is obvious, as MJ =
n∑

i=1

n∑
j=1

EiM
J
jiE

T
j and by definitio MJ = −M .

Definition 5. A matrix M =
n∑

i=1

n∑
j=1

EiMijE
T
j ∈

R
2n×2n is called in upperJ-bidiagonal form ifMij =

02 for j /∈ {i, i + 1} and, in addition,Mii andMii+1

are diagonal.

2.1 Symplectic reflectors

The symplectic reflecto [2, 3] in R
2n×2 is define in

parallel with elementary reflectors

Proposition 6. [3] Let U andV be two2n-by-2 real
matrices that satisfyUJU = V JV = I2. If the2-by-2
matrixC = I2 +V JU is nonsingular, the transforma-
tion S = (U + V )C−1(U + V )J − I2n is symplectic
and takesU to V . This is called a symplectic reflector.
Additionally, if UJ = UT andV J = V T , thenS is
orthogonal and symplectic.

Remark 7. The proposition above remains true only
if UJU = V JV . In this case,C = UJU + V JU .

Lemma 8. Let U = [u1 u2] ∈ R
2n×2 be a non-

isotropic matrix (UJU 6= 02) andV = Uq(U)−1 its
normalized matrix. Then, there is a symplectic reflec-
tor S takesV toE1 and thereforeU toE1q(U), which
in turn takes the following form:

SU =




* 0
0 0
...

...
0 0
0 *
0 0
...

...
0 0




ւ n + 1

where

q(U) =





√
αI2

√
−α

(
1 0
0 −1

) if α > 0

if α < 0
α = uH

1 Ju2.

Remark 9. Using symplectic reflectors with a ma-
trix A ∈ R

2n×2n, we obtain the factorizationA =
SR, where S ∈ R

2n×2n is symplectic andR =(
R11 R12

R21 R22

)
∈ R

2n×2n. R is J-triangular and,

in addition,R12 is a strictlyn-by-n upper triangular
matrix. R is as follows:

We discuss below some useful properties of sym-
plectic reflectors

Proposition 10. LetS be a2n-by-2n real symplectic
matrix. There is then a sequence of symplectic reflec-
torsS1, S2, · · · , Sn, such thatS = S1S2 · · ·Sn.
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Proof. Step 1:

Set U1 = [q1, qn+1] ∈ R
2n×2. As S is sym-

plectic, then UJ
1 U1 = I2. Then, the symplectic

reflecto P1 = (U1 + E1)(I2 + EJ
1 U1)

−1(U1 +
E1)

J − I2n verifie P1U1 = E1. The (n + 1)th-
component of both (P1qk) and (P1qn+k) is equal
to zero for k = 2, 3, . . . n. On the one hand,
(P1q1)

T J (P1qk) = qT
1 Jqk = 0, and on the

other hand, (P1q1)
T J (P1qk) = eT

1 J (P1qk) =
eT
n+1 (P1qk) is simply the (n + 1)th-component of

(P1qk). Likewise, the firs component of both (P1qk)
and (P1qn+k) disppears. Finally, we obtain

P1S =




n

n←−−−−−−−−−−→xy

1 0 · · · 0
0 ∗ · · · ∗
...

... . . . ...
0 ∗ · · · ∗

n←−−−−−−−−−→
0 0 · · · 0
0 ∗ · · · ∗
...

... . . . ...
0 ∗ · · · ∗

n

xy

0 0 · · · 0
0 ∗ · · · ∗
...

... . . . ...
0 ∗ · · · ∗

1 0 · · · 0
0 ∗ · · · ∗
...

... . . . ...
0 ∗ · · · ∗




Thereafter, we continue to update the value of qi:
qi ←− P1qi by varying i from 1 to 2n. Note that
now we have q1 = e1 and qn+1 = en+1.

Step 2:

Set U1 = [q1, qn+1] ∈ R
2n×2. As S is symplec-

tic, then UJ
1 U1 = I2 and the symplectic reflecto al-

lows us to set U2 = [q2, qn+2] ∈ R
2n×2. As P1S is

still symplectic, U2 verifie UJ
2 U2 = I2, and the sym-

plectic reflecto P2 = (U2 +E2)(I2 +EJ
2 U2)

−1(U2 +
E2)

J − I2n has the following form:

P2 =




1 0 · · · 0 0 0 · · · 0

0 ∗ ∗ ∗ ... ∗ ∗ ∗
... ∗ ∗ ∗ ... ∗ ∗ ∗
0 ∗ ∗ ∗ 0 ∗ ∗ ∗
0 · · · · · · 0 1 0 · · · 0
... ∗ ∗ ∗ 0 ∗ ∗ ∗
... ∗ ∗ ∗ ... ∗ ∗ ∗
0 ∗ ∗ ∗ 0 ∗ ∗ ∗




and verifie P2U2 = E2. As in step 1, we obtain

P2P1S =




1 0 0 ... 0
0 1 0 ... 0
0 0 ∗ ... ∗
...

...
... . . . ...

0 0 ∗ · · · ∗

0 0 0 ... 0
0 0 0 ... 0
0 0 ∗ ... ∗
...

...
...

...
...

0 0 ∗ ... ∗
0 0 0 ... 0
0 0 0 ... 0
0 0 ∗ ... ∗
...

...
...

...
...

0 0 ∗ ... ∗

1 0 0 ... 0
0 1 0 ... 0
0 0 ∗ ... ∗
...

...
... . . . ...

0 0 ∗ ... ∗




We thereby obtain Pn · · ·P2P1S = I2n, and then
S = S1S2 · · ·Sn where Sk = P J

k , which achieves
the desired result.

Remark 11. In lemma2.1, by usingU = [u − Ju],
whereu ∈ R

2n with ‖u‖ 6= 0, we obtainS that or-
thogonal and symplectic.

Lemma 12. Letu ∈ R
2s be a nonzero2s-component

real vector. The orthogonal symplectic reflectorS =
(U +

√
αE1)(αI2 +

√
αEJ

1 U)−1(U +
√

αE1)
J−I2s,

where U = [u − Ju] verifiesSu =
√

αe1 with α =

uT u = ‖u‖22.

Proof. As UJU = αI2 with α = uT u = ‖u‖22 > 0,
then a simple calculation gives the result.

2.2 Symplectic Givens rotations

In the following, we defin the rotation on R
2n×2 seen

as a free K-module structure on K = R
2×2. For more

information on symplectic rotations see [7].

Definition 13. A rotation in the(Ei, Ej) plane is de-
fined byR(i, j, C, S) = I2n + Ei (C − I2) ET

i +
EiSET

j −EjS
JET

i +Ej

(
CJ − I2

)
ET

j whereC and
S are 2−by−2 matrix (recall thatEi = [ei en+i] ∈
R

2n×2).

Let us now examine the condition in which the
rotation R(i, j, C, S) is symplecic.

Proposition 14. [7] The rotationR(i, j, C, S) in the
(Ei, Ej) plane is symplectic if and only ifdet(S) +
det(C) = 1 andCS = SC. It is also orthogonal if

S andC are in the following formS =

(
a b
−b a

)
,

C =

(
c d
−d c

)
.
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Let U ∈ R2n×2, such that U =
∑n

i=1 EiMi.

If M1M2 = M2M1, then, by taking S =
1√
α

MJ
2 ,

C =
1√
α

MJ
1 and P = R(1, 2, C, S)(where α =

det(M1) + det(M2) > 0), the 2-by-2 second com-
ponent is zero and W = PU is in following form:

W =




√
α 0
0 0

∗ ∗
...

...
∗ ∗
0
√

α
0 0

∗ ∗
...

...
∗ ∗




←− 2

←− n + 2

Remark 15. The symplectic rotation defined above
is simply a symplectic reflectorS = (U +

Ei)
(
I2 + EJ

i U
)−1

(U + Ei)
J − I2n and takesU to

V

3 TheJ-SVD decomposition

Golub, Kahan and Reinsch [9, 10] presented an ef-
fective, widely used method to fin the SVD of an
arbitrary rectangular real matrix A. The method is
based on computing a bidiagonal matrix for two uni-
tary matrices constructed from the product of a se-
quence of Householder transformations. The second
phase consists in transforming the obtained bidiago-
nal matrix to a diagonal one by a variant of the QR
iteration. Our purpose was to describe J-SVD de-
composition of a 2n-by-2m rectangular matrix A on
the basis of J-bidiagonalization with symplectic re-
flectors The proposed method is define in parallel
with the Golub-Kahan-Reinsch approach. It allows
us to compute the eigenvalues of skew-Hamiltonian
matrix AJA without computing the product of the
full matrix. We obtained the following result for
rank(AT JA) = rank(A),

PAQ =




Σp 0 0 0
0 0 0 0

0 0 Σp 0
0 0 0 0




where P , Q are symplectic matrices and Σp =
σ1, · · · , σp, 2p = rank(A).

3.1 TheJ-Bidiagonalization method

We present here two approaches for computing the J-
bidiagonal form of 2n-by-2m rectangular real matrix.
The firs uses a sequence of symplectic reflector ap-
plied alternately from the left and the right to the zero
parts of the matrix. The second is based on an sym-
plectic Lanczos J-bidiagonalization.

3.1.1 First approach

Let A be a 2n-by-2m rectangular real matrix. For the
algorithm, we used symplectic reflector to compute
a J-bidiagonal form B, such that A = PBQ, where
P ∈ R

2n×2n, Q ∈ R
2m×2m are symplectic matrices.

We illustrate the method for n = 4, m = 3 as follows:
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


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗







∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗







∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗







∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗




the fir t step
is to zero

the(2:8,1), (1:4,5)

and (6:8,5) positions
−→

P1 applied from the left




∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗







0 ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗







0 ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗







∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗







∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗







0 ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗







0 ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗







∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗




the second step is
to zero the (1,3)

(1,5:6), (5,2:3)

and (5,6) positions
−→

Q1applied from the right




∗ ∗ 0
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗







0 0 0
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗







0 0 0
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗







∗ ∗ 0
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗







∗ ∗ 0
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗







0 0 0
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗







0 0 0
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗







∗ ∗ 0
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗




the third step
is to zero the (3:4,2),

(6:8,2)
positions
−→

P2 applied from the left




∗ ∗ 0
0 ∗ ∗
0 0 ∗
0 0 ∗







0 0 0
0 0 ∗
0 0 ∗
0 0 0







0 0 0
0 0 ∗
0 0 ∗
0 0 ∗







∗ ∗ 0
0 ∗ ∗
0 0 ∗
0 0 ∗




.

The last step is to zero the (4, 3), (5 : 8, 3), (2 : 3, 6), (8, 6) positions, applying the symplectic reflecto P3 from
the left to obtain the desired J-bidiagonal form:







∗ ∗ 0
0 ∗ ∗
0 0 ∗
0 0 0







0 0 0
0 0 0
0 0 0
0 0 0







0 0 0
0 0 0
0 0 0
0 0 0







∗ ∗ 0
0 ∗ ∗
0 0 ∗
0 0 0







.
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Algorithm 3.1: J-Bidiagonalization Algorithm

Input : Matrix A ∈ R
2n×2m

Output: Symplectic matrix P ∈ R
2n×2n and

symplectic matrix Q ∈ R
2m×2m and

the J-Bidiagonal matrix B
so that PAQ = B.
P and Q are products of symplectic reflector
1. For k = 1, 2, · · · , m
• Set Uk = [u v] = AEk where Ek = [ek en+k]
• For i = 1, · · · , k − 1{

u (i)←− 0 , u (n + i)←− 0
v (i)←− 0 , v (n + i)←− 0

• EndFor
• Compute the symplectic reflecto Pk

associated to Uk and
Update A←− PkA
• Set Vk = [u v] = AET

k

• For i = 1, · · · , k − 1{
u (i)←− 0 , u (n + i)←− 0
v (i)←− 0 , v (n + i)←− 0

• EndFor
• Compute the symplectic reflecto Qk

associated to Vk and
Update A←− AQT

k

2. EndFor k
3. B ←− A.

3.1.2 Second approach

The Lanczos bidiagonalization technique can be ap-
proached from several equivalent perspectives. We
started by setting up the notation. Consider ,
A = P JBQ where P = [p1, p2, · · · , p2n], Q =
[q1, q2, · · · , q2n] are symplectic matrices, and B is J-
bidiagonal matrix, as follows:

B = P JAQ =


α1 β1 0 0 0 0 0 0

0 α2
. . . 0 0 0 0 0

0 0
. . . βm−1 0 0 0 0

0 0 0 αm 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 γ1 δ1 0 0

0 0 0 0 0 γ2
. . . 0

0 0 0 0 0 0
. . . δm−1

0 0 0 0 0 0 0 γm

0 0 0 0 0 0 0 0




Using the above result, we constructed the fol-
lowing algorithm to obtain the J-bidiagonal form and
symplectic matrices P and Q.
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Algorithm 3.2: Symplectic Lanczos
J−Bidiagonalization

Input: Matrix A ∈ R
2n×2m (n ≥ m) and

a symplectic matrix V1 = [q1 qm+1] ∈ R
2m×2

Output: Symplectic matrix P ∈ R
2n×2n and

symplectic matrix Q ∈ R
2m×2m such that

P JAQ is J−bidiagonalization.
1. Set C0 = 02×2 and U0 = 02m×2

2. For i = 1, 2, · · · , m
- W = AVi − Ui−1Ci−1

(AVi = Ui−1Ci−1 + UiNi)
- Compute a diagonal 2-by-2 real matrix Ni

such that NJ
i Ni = W JW

(see, J−Normalization above)
- Set αi = Ni(1, 1) and γi = Ni(2, 2) and
Ui = [pi pn+i] = WN−1

i

- W = AJUi − ViN
J
i(

AJUi = ViN
J
i + Vi+1C

J
i

)

- Using J−Normalization above, compute
a diagonal 2-by-2 real matrix Ci

such that CJ
i Ci = W JW

-Set βi = Ci(1, 1) and δi = Ci(2, 2) and
Vi+1 = [qi+1 qm+i+1] = WC−J

i

3. End
4.B = P JAQ =


α1 β1 0 0 0 0 0 0

0 α2
. . . 0 0 0 0 0

0 0
. . . βm−1 0 0 0 0

0 0 0 αm 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 γ1 δ1 0 0

0 0 0 0 0 γ2
. . . 0

0 0 0 0 0 0
. . . δm−1

0 0 0 0 0 0 0 γm

0 0 0 0 0 0 0 0




is the desired form.

3.2 TheJ-SVD decomposition via a symplec-
tic Golub-Kahan-Reinsch method

This method consists of two phases. In the firs
phase, finit sequences of symplectic reflector are
constructed as described above to obtain the desired
J-bidiagonal matrix (see algorithm 4.1). B = PAQJ

is J-bidiagonal where P and Q are symplectic matri-
ces. They can also be obtained by symplectic Lanczos
J−bidiagonalization (see algorithm 4.2). The sec-
ond phase consists to iterative diagonalization of J-
bidiagonal matrix B by a symplectic QR-like method
using the symplectic Givens rotations described in
paragraph 2.2.

B = B(0) −→ B(1) = U (1)B(0)V (1) · · · −→

B(k) = U (k)B(k−1)V (k) · · · −→ Σ̃ =




Σp 0 0 0
0 0 0 0

0 0 Σp 0
0 0 0 0




where U (k), V (k) are product of symplectic Givens
rotations and Σp =diag(σ1, · · · , σp), 2p = rank(A)
and (σi > 0)1≤i≤p.

Numerical examples

We report here the results of numerical tests in which
we compared our method for computing the eigenval-
ues of skew-Hamiltonian matrixAJAwith the Matlab
method. We calculated the error in J-SVD decompo-
sition for rectangular matrix A and the relative errors
of computed eigenvalues of AJA.

Example:

Let A be a rectangular matrix of order 16 × 12
define as follows:

A = P




Σ 0 0 0 0 0

0 0 0 0 0 0

0 0 0 Σ 0 0

0 0 0 0 0 0


QT

where P is a 16 × 16 random orthogonal symplectic
matrix, and Q is a 12 × 12 random orthogonal sym-
plectic matrix.
• Σ = diag(9, 8, 5, 4, 2, 1, ), the error for J-SVD

decomposition was 3.8352e − 015. The relative er-
rors by our method and that of the Matlab method for
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nonzero eigenvalues are shown in the table below:

eigenvalue J-SV D Matlab 7.8.0

±81 2.2808e− 015 5.2633e− 015

±64 5.1070e− 015 9.9920e− 015

±25 0 5.6843e− 016

±16 1.3323e− 015 5.2458e− 015

±4 0 2.9976e− 015

±1 6.6613e− 016 4.7740e− 015

• Σ = diag
(
102, 10, 1, 10−1, 10−2, 10−4

)
, the

error for J-SVD decomposition was 8.5520e − 008.
The relative errors by our method and that of the Mat-
lab method for nonzero eigenvalues are shown in the
table below:

eigenvalue J-SV D Matlab 7.8.0

±104 3.6380e− 016 8.4254e− 016

±102 7.1054e− 016 4.2633e− 016

±1 1.7764e− 015 5.8842e− 015

±10−2 2.7756e− 015 5.1963e− 011

±10−4 4.0251e− 014 1.3693e− 009

±10−8 1.1465e− 011 2.4381e− 006

• In this case a matrix A is of order 24× 20 and
Σ =
diag

(
103, 102, 10, 1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6

)
,

the error for J-SVD decomposition was
4.6566e− 016. The relative errors by our method and
that of the Matlab method for nonzero eigenvalues
are shown in the table below:

eigenvalue J-SV D Matlab 7.8.0

±106 0 1.8190e− 016

±104 2.8422e− 016 1.4381e− 013

±102 6.6613e− 016 1.6211e− 012

±1 2.2551e− 014 1.4152e− 009

±10−2 5.8005e− 014 1.5873e− 008

±10−4 2.4882e− 013 9.0538e− 006

±10−6 2.5295e− 010 0.0012

±10−8 1.8854e− 009 0.3243

±10−10 9.4335e− 010 22.3130

±10−12 4.6566e− 008 1.0000e + 05

4 Conclusion
We have presented a numerical method for computing
symplectic J-SVD like decomposition. This method
was inspired by the Golub-Kahan-Reinsch method.
Our approach here was based on the use of sym-
plectic reflectors The structured matrices such as
skew-symmetric matrix AJAT , the Hamiltonian ma-
trix JAT A and the skew-Hamiltonian matrix AJA

can be derived from such a decomposition. The nu-
merical examples presented show the effectiveness of
proposed algorithm.
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